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Liquid Crystals, 1999, Vol. 26, No. 9, 1393± 1402

Equilibrium statistics of irregularly branched and dendrimeric
polymeric liquid crystals

JONATHAN J. STOTT* and ROLFE G. PETSCHEK
Department of Physics, Case Western Reserve University, Cleveland, OH 44106, USA

(Received 26 February 1999; accepted 23 March 1999 )

In this paper we develop a self-consistent model for the equilibrium statistics of nematic
branched polymeric liquid crystals in the mean-® eld approximation. We have solved the
resulting system of equations numerically and ® nd a nematic± isotropic phase transition. We
® nd that the order± disorder transition temperature scales as a function of the bond
continuation probability, or equivalently the molecular weight, with an exponent that depends
on the interaction potential. These results are compared with the experimentally observed
behaviour.

1. Introduction models for linear main-chain polymeric liquid crystals.
First, this model allows for multiple connections to aPolymeric liquid crystals are polymers that on average
given monomer and thus a branched polymer can be con-orient themselves along some spatial axis. Polymeric
structed. Second, a more detailed interaction potentialliquid crystals are generally synthesized by polymerizing
between the mesogens is used. We believe that this ismonomers that have a long rigid segment attached to a
the ® rst work that has used such realistic potentials inrelatively ¯ exible tail. The rigid segments tend to orient
a calculation of this kind. In the context of this model,the polymer as if it were a traditional liquid crystal due
we then calculate the model partition function and freeto their steric repulsion and intermolecular interactions,
energy for a branched polymer by use of a mean-® eldwhile the ¯ exible tails connecting the monomers to each
technique.other introduce correlations between adjacent monomers

Our model consists of bonding and non-bondingand limit the motionof individual monomers. Depending
interactions. The bonding interactions are those inter-on the chemistry, the rigid segments will either be part
actions between monomers mediated by the strong poly-of the polymer backbone itself (main-chain polymeric
mer linkages between the monomers on a single polymerliquid crystals) or will hang o� it like pendants (side-chain
chain. The inter-polymeric interactions are the non-polymeric liquid crystals).
bonding interactions (hard core repulsion and van derIn linear polymers every interior monomer has exactly
Waals interactions) between monomers, whether or nottwo neighbours. If the monomers are able to connect to
they are on the same chain. These interactions and themore than two other monomers, the polymer will form
symbols we will use to describe them are illustrated ina branched structure. A perfectly reacted, or regular
® gure 1. Each monomer in the branched polymers con-branched, polymer has each interior monomer connected
sidered may be bonded to up to three other monomers.to the maximum number of possible neighbours, while an
The statistical weight of any given monomer con® gurationimperfectly reacted polymer has a non-zero probability
is controlled, in part, by the bonding interactionsthat any given interior bond is unreacted. Recently,
between these monomers. The three di� erent chemicalPercec et al. synthesized imperfectly [1, 2] and regularly
bonds will, in principle, each have a di� erent set of[3] branched polymeric liquid crystals, and experi-
statistical weights. We will assume that two bonds canmentally examined their physical properties. In this paper
be attached to one end, the t̀ail’, of each monomer andwe construct a statistical model for both imperfectly
one bond can be attached to the other end, the h̀ead’,and perfectly reacted main-chain polymers with nematic
of a monomer. We will assume that bonds can only beordering.
formed h̀ead’ to t̀ail’. The statistical weight associated
with the linkages between monomers can thenbe described2. The model
as functions of the orientations uÃ of the monomers thatWe will use a model for branched polymeric liquid
are bonded to each other.crystals that is an extension in two ways of previous

Since there is some sti� ness to the backbone, if the
monomer k Õ 1 has an orientation given by the unit*Author for correspondence; e-mail: jjs17@po.cwru.edu
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1394 J. J. Stott and R. G. Petschek

As in previous work [5], we will solve for the partition
function approximately by including the bonding inter-
actions and the mean-® eld in the reference hamiltonian
H0 . It follows that H Õ H0 is U e f f Õ Vm f . If we then
consider the inequality in (1) to be an equality we now
® nd

F . F 0 + 7 U e f f Õ Vm f 8 0 . (2)

Assuming U e f f Õ Vm f contains only pairwise monomer±
monomer interactions operating via the e� ective inter-
action potential in the presence of the mean ® eld [5],
as described above, we ® nd

7 U e f f Õ Vm f 8 0 =
1

2V2 �
j ,kP Pj (uÃ j )P Pk(uÃ k)

Figure 1. Illustration of the various interactions in the model.

Ö PP U ef f (uÃ j , uÃ k; r
®

j , r
®

k)duÃ j duÃ kdr
®

j dr
®

k

vector uÃ k
Õ

1 , then there is some probability distribution
for the connected monomer k to have an orientation uÃ k .

Õ �
l P Pl (uÃ l )Vm f (uÃ l )duÃ l (3)This joint probability distribution, in the absence of other

interactions between the monomers, is PB (uÃ k
Õ

1 , uÃ k ). In
where Pj (uÃ j ) is the probability distribution for a monomerprinciple there are two such functions since the two t̀ail’
j to have an orientation uÃ j . The sums in (3) run over alllinkages will have di� erent statistical weights. In this
monomers in the system. P (uÃ ) is de® ned to be thepaper, however, we ignore this distinction.
average probability distribution that any given monomerSimilarly, if the heads of two monomers with orien-
will have an orientation uÃ ,tations uÃ 1 and uÃ 2 are attached the tails of a monomer

with orientation uÃ , then there is an associated probability
distribution PB

2 (uÃ , uÃ 1 , uÃ 2 ). This again re¯ ects the sti� ness P (uÃ ) ;
1

N
�
j

Pj (uÃ ) (4)
of the polymer. These functions, PB (uÃ ,uÃ 1 ) and PB

2 (uÃ ,uÃ 1 ,uÃ 2 ),
will be discussed in more detail below. where N is the total number of monomers in the polymer.

Next, there are interactions between monomers The average probability distribution (4) can equivalently
located on di� erent polymer backbones. We will use be written as a functional derivative [5]
an e� ective potential U e f f (uÃ , uÃ ¾ ; r

®
, r

® ¾ ) to represent these
interactions. The e� ective potential U e f f is based on the P(uÃ )=

Õ 1

b 7 N 8
d log(Z0 )

dVm f (uÃ )
(5)

Mayer function of the anisotropic potential of Berne
and Pechukas [4]. This potential was developed for where 7 N 8 is the average number of monomers per
simulations of liquid crystals and will be discussed in polymer and b is the inverse temperature. If N p is the
more detail later on. In our calculation we also include total number of polymers, then N = 7 N 8 N p .
a mean ® eld potential Vm f (uÃ k), which will be solved for For the model-e� ective potential, we used a Mayer
self-consistency. f -function [6]

Given the partition function for a reference system,
U e f f (uÃ 1 , uÃ 2 ; r

®
1 2 )= f1 2 (uÃ 1 , uÃ 2 ; r

®
1 2 )an upper bound on the free energy of an interacting

system can be determined using the Gibbs± Bogoliubov = b Õ
1 {1 Õ exp[Õ bVB P (uÃ 1 , uÃ 2 ; r

®
1 2 )}

identity
(6)

F < F 0 + 7 H Õ H0 8 0 (1)
with interactions given by the Berne and Pechukas

where F is the Helmholtz free energy, H is the overlap potential [4, 7] (a modi® ed Lennard± Jones
Hamiltonian of the system, and the subscript 0̀’ indicates potential)
that these terms are evaluated using the known reference

VB P (uÃ 1 , uÃ 2 ; r
®

1 2 )states. F , in terms of the canaonical partition function
Z0 , is given by

= 4e(uÃ 1 , uÃ 2 )GCs(uÃ 1 , uÃ 2 , rÃ )

|r® | D1 2

Õ Cs(uÃ 1 , uÃ 2 , rÃ )

|r® | D6 HF 0 = Õ NT log(Z0 )

where N is the number of particles in the system. (7)
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1395Equilibrium statistics of polymeric L Cs

with the de® nitions with an orientation uÃ k given that the (k Õ 1)th monomer
has an orientation uÃ k

Õ
1 on a chain with sti� ness V. For

e(uÃ 1 , uÃ 2 )= e0 [1 Õ x2 (uÃ 1 ¯ uÃ 2 )2 ]Õ
1 /2 (8)

PB (uÃ k , uÃ k
Õ

1 ), Petschek and Terentjev [5] used a simple
and potential

s(uÃ 1 , uÃ 2 , rÃ )= s0 C1 Õ
x

2 A[rÃ ¯ uÃ 1 +rÃ ¯ uÃ 2 ]2

1+x[uÃ 1 ¯ uÃ 2 ] PB (uÃ 1 , uÃ 2 )=
V

4psinh(V)
exp[V(uÃ 1 ¯ uÃ 2 )]. (13)

This correctly re¯ ects the fact that the bonds in the
+

[rÃ ¯ uÃ 1 Õ rÃ ¯ uÃ 2 ]2

1 Õ x[uÃ 1 ¯ uÃ 2 ] BDÕ
1 /2

. (9) polymer chain are ¯ exible with a ¯ exibility parameter V

which corresponds approximately to a ten carbon alkyl
In the above equations (7± 9), x ; (r2

d
Õ r2

) )/(r2

d
+r2

) ) chain at room temperature. Alkyl chains can also have
is the anisotropy parameter (for typical liquid crystal sharp bends (gauche bonds). This is not, however,
dimensions, x# 0.885) and e0 and s0 are parameters included in our model of the statistical weight for the
describing the potential well depth and interaction range monomer± monomer bond.
respectively. We will assume that these parameters are Generalizing equation (12) to the case of branched
all independent of temperature. polymers, it is important to make two distinctions

In a self-consistent theory, the functional variation of the between this work and the previous work of others on
free energy (2) with respect to the mean-® eld potential, linear polymers [5]. First, the monomers in a branched
Vm f (uÃ ), must be zero. Since the variation of the log of polymer have a uniquely identi® able direction, having
the partition function with respect to the mean-® eld one connecting chain at their h̀ead’ and two at their
potential is given by equation (5), we ® nd a self-consistent t̀ail’. Second, the presence of an unreacted tail in a
expression for the mean-® eld potential branched polymer no longer implies an end to the chain

as it does for linear chains. In general, three possible
Vm f (uÃ )= rmP P(uÃ ¾ )UÄ (uÃ , uÃ ¾ ) duÃ ¾ (10) con® gurations occur: monomers with no further con-

nections, monomers with a single connecting chain, and
where rm = N/V is the monomer number density and monomers connected to two new monomers (we ignore
UÄ (uÃ , uÃ ¾ ) is given by substituting equation (6) into (3) the possibility of ring formations). As mentioned earlier,
and integrating out the radial variables. Evaluating the the statistical weights of these three con® gurations are,
integrals in equation (3) gives in principle, independent quantities.

Let mk(uÃ k) be the partial partition function or state
UÄ (uÃ 1 , uÃ 2 )

for all monomers connected to the tail of the kth
monomer (see ® gure 2)

=
4

3
be(uÃ 1 , uÃ 2 )P s(uÃ 1 , uÃ 2 , rÃ 1 2 )3 drÃ 1 2

mk(uÃ 1 )

Ö P 2

0

(2x1 /2 Õ x Õ
1 /2 ) exp[Õ 4be(uÃ 1 , uÃ 2 )(x2 Õ x)dx. =P0 +P1 P m( 1 )

k
Õ

1 (uÃ 2 ) exp[Õ bVm f (uÃ 2 )]PB (uÃ 1 , uÃ 2 )duÃ 2

(11)
+P2 P m( 1 )

k
Õ

1 (uÃ 2 ) exp[Õ bVm f (uÃ 2 )]
The radial (dx) integral in equation (11) has an exact
solution in terms of parabolic cylindrical functions [8].

Next, we need to determine the partition function Ö P m( 2 )
k
Õ

1 ¾ (uÃ 3 ) exp[Õ bVm f (uÃ 3 )]
for a single branched polymer in a mean-® eld potential.
Following Petschek and Terentjev [5], we begin with Ö PB

2 (uÃ 1 , uÃ 2 , uÃ 3 )duÃ 2 duÃ 3 (14)
the recursion relation for the partial partition function
of a linear chain polymer in a mean-® eld potential

mk(uÃ k )=P PB (uÃ k , uÃ k
Õ

1 )mk
Õ

1 (uÃ k
Õ

1 )

Ö exp[Õ bVm f (uÃ k
Õ

1 )duÃ k
Õ

1 (12)

where mk (uÃ k) is the partial partition function for the kth
monomer (the sum over all states to the t̀ail’ of the
kth monomer) and PB (uÃ k , uÃ k

Õ
1 ) is the conditional bond

Figure 2. Recursion directions for mk(uÃ ) and lk(uÃ ).orientational probability of ® nding the kth monomer
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1396 J. J. Stott and R. G. Petschek

where PB is the joint probability distribution for a contribute independently to the bond orientational
probability PB

2 (uÃ , uÃ 2 , uÃ 3 ), and therefore it factors into themonomer with one connected tail, Pn are the statistical
weights for monomers with n connected tails product of the bond probabilities of the individual chains

Pn = exp(bmn), n = 0, 1, 2 (15) PB
2 (uÃ , uÃ 2 , uÃ 3 )= PB (uÃ , uÃ 2 )PB (uÃ , uÃ 3 ). (19)

and PB
2 (uÃ 1 , uÃ 2 , uÃ 3 ) is the joint conditional bond This will simplify the computation signi® cantly.

orientational probability.
Inverting equation (15), the chemical potentials of the 3. Randomly branched polymers

three possible con® gurations are just For randomly branched polymers we will assume that
all monomers are statistically equivalent and thereforemn = b Õ

1 log(Pn). (16)
the subscripts on individual monomers can be dropped.

While mk (uÃ k) represents the in¯ uence of all prior This assumption can only be used with randomly
monomers in the polymer, we still need to account for branched polymers because regularly branched polymers
the in¯ uence of all subsequent monomers. Let lk(uÃ k) be have uniquely de® ned ìnterior’ and èxterior’ monomers
the partial partition function of all monomers connected (see ® gure 3) which are clearly not statistically equivalent.
to the head of the kth monomer (again, see ® gure 2), The recursion relations (14) and (17) now take the

formlk(uÃ 1 )

m(uÃ )= P0 +P1 P PB (uÃ , uÃ ¾ )m(uÃ ¾ ) exp[Õ bVm f (uÃ ¾ )] duÃ ¾= Q0 +Q1 P lk+ 1 (uÃ 2 ) exp[Õ bVm f (uÃ 2 )]PB (uÃ 1 , uÃ 2 )duÃ 2

+P2 CP PB (uÃ , uÃ ¾ )m(uÃ ¾ ) exp[Õ bVm f (uÃ ¾ )] duÃ ¾D2

+Q2 P lk+ 1 (uÃ 2 ) exp[Õ bVm f (uÃ 2 )]

(20)
Ö P mk¾ (uÃ 3 ) exp[Õ bVm f (uÃ 3 )]PB

2 (uf 1 , uÃ 2 , uÃ 3 )duÃ 3 duÃ 2 and

(17)
l (uÃ 1 )= Q0 +Q1 P PB (uÃ , uÃ ¾ )l (uÃ ¾ ) exp[Õ bVm f (uÃ ¾ )] duÃ ¾

where the Qn are again the statistical weights of con-
® gurations that depend on n subsequent monomers; that
is, Q0 represents a monomer with an unconnected head +Q2 P PB (uÃ , uÃ ¾ )l(uÃ ¾ ) exp[Õ bVm f (uÃ ¾ )]
chain, Q1 represents a monomer with a connected
head chain connected to a monomer with only one

Ö P PB (uÃ ¾ , uÃ ² )m(uÃ ² ) exp[Õ bVm f (uÃ ² )] duÃ ² duÃ ¾ .reacted tail, and Q2 represents a monomer connected to
a monomer with two connected tails. Note that since
they represent di� erent views of the same polymer, the (21)
statistical weights Qn can always be speci® ed in terms of

Similarly, the probability (18) becomesthe statistical weights Pn .
Given these de® nitions, the total probability that the P(uÃ )= m(uÃ ) exp[Õ bVm f (uÃ )]l(uÃ )

kth monomer will have an orientation uÃ k in the presence
of a mean-® eld potential Vm f (uÃ k) is NP m(wÃ ) exp[Õ bVm f (wÃ )]l (wÃ )dwÃ . (22)

Pk(uÃ k)=
mk (uÃ k) exp[Õ bVm f (uÃ k )]lk (uÃ k)

P mk(wÃ ) exp[Õ bVm f (wÃ )]lk(wÃ )dwÃ

. (18)

This is easily seen since m(uÃ k ) has the interpretation as
a sum over all possible orientations of monomers to
the tail of the kth one given that the kth monomer has
orientation uÃ k , l(uÃ k) has the same interpretation with
regards the head of the monomer, and exp[Õ bVm f (uÃ k)]
is the statistical weight of an isolated monomer with
orientation uÃ k in a mean-® eld potential Vm f (uÃ ).

For the remainder of the paper, we will assume that Figure 3. Sketch of a regularly branched polymer, showing
the h̀ead’ monomer.in the mean-® eld limit each of the two tail chains
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1397Equilibrium statistics of polymeric L Cs

Since we wish to model the physically realistic Both Q¾1 (the probability that the head chain is con-
nected and it forms the only connected tail on the nextsituation in which chemical reactions do not occur, we

will ® x the mean molecular weight at some constant monomer) and Q¾2 (the probability that the head chain
is connected as one of two connected tails on the nextvalue. To simplify the analysis, we also assume that the

probability of bond formation is a constant and this monomer) can be completely speci® ed in terms of in
terms of P ¾j . Since PI is de® ned as the probability thatprobability is always equal to (1 Õ PI). Strictly speaking,

this, together with our assumption that all monomers any given tail chain in a randomly branched polymer is
unconnected, it is easy to show thatare statistically equivalent, is not the same as saying

that no further chemical reactions occur. Rather, it is
Q¾1 = (1 Õ Q¾0 )PIthe same as the assumption that chemical reactions can

occur provided the number average molecular weight and
remains constant. We do not believe, however, that this

Q¾2 = (1 Õ Q¾0 )(1 Õ PI). (26)seriously changes the physics of our model.
From experiments, it is well known that real randomly Substituting for PI and rearranging terms yields

branched polymers are a mixture of molecular weights.
Q¾0 = (P ¾0 Õ P ¾2 )Õ

1
Thus, according to the Gibbs phase rule the isotropic±
nematic transition occurs over a range of temperatures. Q¾1 = (1 Õ Q¾0 )(2P ¾0 +P ¾1 )/2
Our previous assumptions, however, will cause a sharp

Q¾2 = (1 Õ Q¾0 )(2P ¾2 +P ¾1 )/2. (27)isotropic± nematic transition, again by the Gibbs phase
rule. Thus we cannot predict the (small) width of these Now, knowing that Ÿ P (uÃ ) duÃ ; 1 with P (uÃ ) given by
transitions. We do not believe, however, that this seriously equation (22), we can compute term by term the
a� ects the predicted qualitative trends we will see in the statistical weights Pj and Qj in equations (20, 21) in
transition temperatures. terms of the probabilities P ¾j and Q¾j :

If N j is the number of monomers with j connected
tails and there are 7 N 8 monomers in the polymer, then P0 = P ¾0 L GP l(uÃ ) exp[Õ bVm f (uÃ )] duÃ HÕ

1

P ¾j , the probability that a monomer has j unreacted tails,
is just

P1 = P ¾1 L GP l(uÃ ) exp[Õ bVm f (uÃ )]
P ¾j = N j / 7 N 8 . (23)

For any branched network, there are exactly (7 N 8 +1)
Ö P PB (uÃ , uÃ ¾ )m(uÃ ¾ ) exp[Õ bVm f (uÃ ¾ )] duÃ ¾ duÃ ¾ HÕ

1

unreacted tails and exactly one unreacted head.
Therefore, the probability, Q¾0 , that a monomer has an
unconnected head is just 1/7 N 8 . The head monomer P2 = P ¾2 L GP l(uÃ ) exp[Õ bVm f (uÃ )]
has on average (P ¾1 +2P ¾2 ) neighbours. These monomers
have in turn (P ¾1 +2P ¾2 ) Ö (P ¾1 +2P ¾2 ) neighbours, etc. For

Ö CP PB (uÃ , uÃ ¾ )m(uÃ ¾ ) exp[Õ bVm f (uÃ ¾ )] duÃ ¾D2

duÃ HÕ
1

an entire chain, then,

7 N 8 = (P ¾0 Õ P ¾2 )Õ
1 (24)

Q0 = Q¾0 L GP m(uÃ ) exp[Õ bVm f (uÃ )] duÃ HÕ
1

and thus Q¾0 = 1/(P ¾0 Õ P ¾2 ) where PI is de® ned as

PI ; (2P ¾0 Õ P ¾1 )/2 (25)
Q1 = Q¾1 L GP m(uÃ ) exp[Õ bVm f (uÃ )]

which is equivalent to our previous de® nition of 1 Õ PI

as the probability that any given bond is connected
Ö P PB (uÃ , uÃ ¾ )l(uÃ ¾ ) exp[Õ bVm f (uÃ ¾ )] duÃ ¾ duÃ ¾ H Õ

1

to another monomer. Thus, the probabilities P ¾j in
equation (23) are

P ¾0 = P2
I Q2 = Q¾2 L GP m(uÃ ) exp[Õ bVm f (uÃ )]

P ¾1 = 2PI (1 Õ PI )

Ö P PB (uÃ , uÃ ¾ )l(uÃ ¾ ) exp[Õ bVm f (uÃ ¾ )]and

P ¾2 = (1 Õ PI )
2 .

Ö P PB (uÃ , uÃ ² )m(uÃ ² ) exp[Õ bVm f (uÃ ² )] duÃ ² duÃ ¾ duÃ H Õ
1

and the number average molecular weight 7 N 8 is [9]

7 N 8 = (2PI Õ 1)Õ
1 . (28)
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1398 J. J. Stott and R. G. Petschek

with normalization term L given by branched polymer a generation number G. The generation
of the h̀ead’ monomer we de® ne to be 1. The two
monomers connected to it have a generation numberL =P m(uÃ ) exp[Õ bVm f (uÃ )]l (uÃ )duÃ . (29)
of 2. The four monomers connected to the second
generation have a generation number of 3, and so on.From equations (20, 21, 28), it is apparent that the
The number of monomers per polymer 7 N 8 in terms ofmean-® eld potential is speci® ed only to within a constant
the generation number isV ¾ . We de® ne V ¾ , then, to be such that L is always equal

to unity. We would like to note in passing that the 7 N 8 = 2G Õ 1.
above transformation (28) from statistical weights to

Because we now have an explicit index, the simpli® edprobabilities can also be performed as a Legendre trans-
form of the recursion relations (20, 21) cannot be used,formation of the partial partition function from ® xed
but instead we must use the more general relationschemical potentials, mn , to ® xed mean numbers, 7 Nn8 ,
(14, 17), subject to the approximation (19) for the jointwhich results in an identical system of equations. This
conditional probability. From ® gure 3, however, we seeis physically reasonable since once the reactions end, the
that the dependence of the probabilities P ¾i and Q¾i onmolecular weight of the polymer remains constant.
the monomer index can be expressed in terms of theTo turn the partial partition function into a partition
generation number alone. This allows us to simplifyfunction, it is now necessary to integrate over all possible
the computation of the statistical weights P i and Qiorientations of the ® nal monomer. In randomly branched
signi® cantly. Interior monomers will always be con-networks, unlike the linear chains ® rst considered in
nected to two additional monomers, so PI = 0 for thesereference [5], the determination of the ® nal monomer
monomers. The head monomer (G = 1) is unique sinceis somewhat ambiguous. Branched networks have, how-
Q¾0 = 1 for this monomer while Q¾0 = 0 everywhereever, only one monomer that does not have a reacted
else. Finally, the tail monomers are never reacted, sohead chain and as a consequence lN(uÃ 1 ) ; 1, which
only P ¾0 and Q¾2 are non-zero for these monomers.greatly simpli® es the integration. Taking this monomer
These simpli® cations are easily exploited when solvingto be the ènd’ of our polymer, the partition function of
equations (14) and (17) numerically. The conversion froma single polymer is
probabilities to statistical weights and the remainder of
the analysis are the same as that of §3.

Z0 =P m(uÃ ) exp[Õ bVm f (uÃ )] duÃ . (30)

5. Numerical results
For a canonical partition function with mean-® eld inter- Equations (14, 17) and (20, 21) are both systems of
actions and a ® xed total number of monomers N , the nonlinear integral equations that must be solved before
free energy F 0 of a collection of N p polymers is the free energy, and hence the transition temperature,

can be determined. We solved the systemof simultaneousF 0 = Õ Np b Õ
1 log(Z0 )+N �

j
mj P ¾j (31)

equations for the regularly branched (10, 14, 17) and
randomly branched (10, 20, 21) polymers numericallywhere the summation is over all chemical species present.
using an iterative ® xed-point algorithm until the rootSubstituting equations (31) and (16) into (2) we ® nd the
mean square di� erence between iterations converged to® nal expression for the free energy per monomer
within some precision (De< 10Õ

9 ). The radial integral
in equation (11) was expressed as the Taylor series

F/N = (Õ b 7 N 8 )Õ
1 logGP m(uÃ ) exp[Õ bVm f (uÃ )duÃ ]H expansion in be(uÃ , uÃ ¾ ) of its analytic solution in parabolic

cylindrical functions [8]. We evaluated the various
angular integrals using Gaussian quadrature [10] overÕ

1

2 P P(uÃ )Vm f (uÃ )duÃ
a grid of 512 nodes. The following parameters were used
throughout the calculations: rm = 1.0, V = 3.0, s0 = 0.5,+b Õ

1 [P ¾0 log(P0 )+P ¾1 log(P1 )+P ¾2 log(P2 )].
and e0 = 0.5. The dimensions of e0 are inverse temper-

(32) ature, s0 is a length, rm is a number density and V is
dimensionless. Note that when the statistical weights are
expressed in terms of the probabilities P ¾n as given in4. Regularly branched polymers

The monomers in a regularly branched polymer, equation (28) and substituted into either (14± 17) or
(20± 21), the resulting equations and the resulting freeunlike those in a randomly branched polymer, are not

statistically equivalentÐ the probabilities P ¾i are functions energy are independent of the absolute magnitude of
both m(uÃ ) and l (uÃ ). There is no reason, then, to assumeof the monomer index. In addition to a sequential

index k, we will assign to each monomer in the regularly that a recursive technique will converge to a meaningful
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1399Equilibrium statistics of polymeric L Cs

solution unless the magnitudes of l and m are somehow
constrained. We thus impose the constraints

P m(uÃ )duÃ = 1

P l (uÃ )duÃ = 1 (33)

which improves the convergence of the algorithm and
reduces the available degrees of freedom.

The resulting system of equations were solved over a
range of temperatures T and for a range of polymer
sizes 7 N 8 . After ® nding the average orientation distri-
bution, we computed the scalar nematic order parameter,
S, of the system; S, is computed as an integration over

Figure 5. Calculated order parameter (S) vs. temperature (T )the orientational distribution P (uÃ ) [11], for a regularly branched polymer. The molecular weight
in terms of the generation number G is 7 N 8 =2G Õ 1.

S ; P P(uÃ )C3

2
(uÃ ¯ zÃ )2 Õ

1

2DduÃ (34)
reveals a non-universal scaling relation between the

where P (uÃ ) is the probability given in equation (22). At polymer transition temperature Tc (PI) and the monomer
the isotropic± nematic phase transition, the order para- transition temperature T0 = Tc (PI = 1),
meter changes discontinuously from zero to S# 0.4
which corresponds to a ® rst order transition from a Tc (PI)=

(1 Õ aPn
I )

(1 Õ a)
T0 (35)

disordered to an ordered state (see ® gures 4 and 5 for
the case of randomly and regularly branched polymers, or, in terms of the molecular weight Mn = 7 N 8 M1respectively). The exact range of transition order para-
meters can be altered by changing the strength of the

Tc (Mn)= G1 Õ a[(Mn+M1 )/2Mn]n

1 Õ a HT0 (36)e� ective interaction (by changing e0 and s0 ). In principle
then, it is possible to model almost any reasonable

where M1 is the monomer mass. The ® tting parameterschange in the order parameter, DS, by carefully choosing
a and n depend on the interaction parameters (s0 , e0 , etc.).the physical parameters of the system.
For our choice of interaction parameters (V =3, e0 =0.5,Having evaluated the free energy over a range of
s0 = 0.5, and x = 0.885) we ® nd for randomly branchedtemperatures and chemical potentials, we next ® tted the
polymers that a = 0.35 and n= Õ 2.5. As shown intransition temperatures Tc determined from the order
® gure 6, the agreement between the ® t and the data isparameter calculations to the probability PI . Doing so
excellent. The regularly branched data follow the same

Figure 4. Calculated order parameter (S) vs. temperature (T ) Figure 6. Isotropic± nematic transition temperature (T ) vs.
reduced molecular mass (Mn/M1 = 7 N 8 ).for a randomly branched polymer.
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1400 J. J. Stott and R. G. Petschek

empiric scaling relation, although the ® t is not as where PB (uÃ , uÃ ¾ , q
® ) is the conditional bond orientational

probability for chemically bonded monomers.good due to the relatively small number of data points
(only integer generation numbers have physical meaning). In terms of G (uÃ , uÃ ¾ , q

® ), the probability P ( 2 ) (uÃ , uÃ ¾ , q
® )

becomes
6. Extensions to mean-® eld theory

P ( 2 ) (uÃ , uÃ ¾ , q
®

)= (P1 +P2 )m(uÃ ) exp[Õ bVm f (uÃ )]Mean-® eld theories are valid up to a point, but
ultimately many-body interactions become important Ö G (uÃ , uÃ ¾ , q

®
)mÄ (uÃ ¾ ) exp[Õ bVm f (uÃ ¾ )]l (uÃ ¾ )

and the theory breaks down. In order to determine the
limits of this model, we calculated an estimate of the ® rst +P2 P dwÃ m(uÃ ) exp[Õ bVm f (uÃ )]
correction to the mean-® eld theory, due to polymer self-
interactions as sketched in ® gure 7. We will only derive Ö G (uÃ , wÃ , q

®
) exp[Õ bVm f (wÃ )]l (wÃ )

the case for randomly branched polymers although the
Ö G (wÃ , uÃ ¾ , Õ q

®
) exp[Õ bVm f (uÃ ¾ )]m(uÃ ¾ ).derivation for regularly branched polymers is completely

analogous. (40)
When intra-polymer interactions are included, the

expression for the mean-® eld potential takes the form The coe� cients P1 and P2 are the statistical weights
given in equations (28). The two terms in (40) re¯ ect
that if each monomer in the network has only one headVm f (uÃ )= rP P(uÃ )UÄ (uÃ , uÃ ¾ )duÃ ¾
group then any two monomers in the polymer must be
connected by either a single linear segment (the ® rst

+rPP P ( 2 ) (uÃ , uÃ ¾ , q
®

)U e f f (uÃ , uÃ ¾ , q
®

)duÃ ¾ dq
® term) or by two separate segments joined together at a

single point (the second term).
Since we are only interested in an order of magni-(37)

tude estimate, we assume that the q
® dependence of all

where U e f f (uÃ , uÃ ¾ , q
® ) is the Fourier transform of equation (6) functions can be factored out and handled separately.

and P(2 ) (uÃ , uÃ ¾ , q
® ) is the two particle conditional probability Speci® cally, we assume that

(the probability that given a monomer with orientation
uÃ there is another monomer on the same polymer with U e f f (uÃ , uÃ ¾ , q

®
)# UÄ (uÃ , uÃ ¾ )U HS (q

®
) (41)

orientation uÃ ¾ with a separation given by wave vector q
® ).

PB (uÃ , uÃ ¾ , q
®

)= PB (uÃ , uÃ ¾ )P(q
®

) (42)Let G (uÃ , uÃ ¾ , q
® ) be the transfer operator that connects

two monomers on the same chain with orientations uÃ , uÃ ¾ G (uÃ , uÃ ¾ , q
®

)= G (uÃ , uÃ ¾ )G (q
®

) (43)
and separation q

® . If mÄ (uÃ ) is the partition function of a
where UHS (q® ) is a Fourier transformed hard spheremonomer which has at least one leg connected
potential and P (q® ) is the Fourier transform of the
Gaussian distribution

mÄ (uÃ ) ; GP m(wÃ ) exp[Õ bVm f (wÃ )]PB (wÃ , uÃ )dwÃ H Õ
1

P(R
®

1 2 )= (a Ó p)3 exp[(R
®

1 2 Õ L
®

)2 /a2 ]. (44)
Ö [m(uÃ ) Õ P0 ] (38)

Hence,
then G (uÃ , uÃ ¾ , q

® ) is given by the integral equation
UHS (q

®
)= 4pR0 q Õ

2 [q Õ
1 R Õ

1
0 sin(qR0 ) Õ cos(qR0 )]

G (uÃ , uÃ ¾ , q
®

)= PB (uÃ , uÃ ¾ , q
®

)+P PB (uÃ , wÃ , q
®

)mÄ (wÃ ) (45)

andÖ exp[Õ bVm f (wÃ )]G (wÃ , uÃ ¾ , q
®

)dwÃ (39)
P(q

®
)= exp(iq® ¯ L

®
) exp(Õ q2 a2 /4). (46)

For the remainder of this paper, we will take the ratio
|L
®

|/a to be 10.0 (a typical value for the small poly-
mers we will be discussing). To obtain G (q® ), we invert
equation (39) and solve for G (q® ). This yields

G (q
®

)=
P (q

®
)PB (uÃ , uÃ ¾ )

G (uÃ , uÃ ¾ ) Õ P(q
®

)P PB (uÃ , wÃ )mÄ (wÃ )Figure 7. First order corrections to mean-® eld theory. The
solid line represents the polymer, the dashed line represents
interactions. Ö exp[Õ bVm f (wÃ )]G (wÃ , uÃ ¾ )dwÃ (47)
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1401Equilibrium statistics of polymeric L Cs

from which the two particle probability (40) can be temperatures of di� erent polymers is not a simple task;
computed. even if the model is faithful to the original, it is still

In terms of the two particle probability, the ® rst necessary to know the correct values for eo , s0 , and V.
correction to mean-® eld theory is given by The interaction range s0 is de® ned in [4] as

s0 ; Ó 2s)
1

2(2p)3 P d3 q
® Tr1 = 2

where s) is the semi-minor axis of the ellipse of
revolution used to model the monomers, which can beÖ logC1+P dwÃ P(uÃ 1 , wÃ , q

®
)U (wÃ , uÃ 2 , q

®
)D . (48)

deduced from the chemistry. Molecular modelling tech-
niques may permit a ® rst principles calculation for V forwhere this is much smaller than the free energy (31)
a given polymer although the e� ort involved might easilygiven by mean-® eld theory, we expect our results to be
become overwhelming, especially if multiple candidatevalid. As seen in ® gure 8, corrections are expected to be
monomers need to be examined. Finally, the interactionimportant only at low temperatures, well away from the
strength e0 can be estimated from an experimentallyisotropic± nematic phase transition. The explicit temper-
measured Hamaker coe� cient [12], although the calcu-ature dependence was factored out of ® gure 8 simply to
lations involved are fairly tedious. To the best of ourbe dimensionally consistent with equation (48).
knowledge, however, the Hamaker coe� cient of these
materials has not been measured.7. Discussion

Several approximations were made in deriving this
model. First, we assumed that the ordering in¯ uence

8. Conclusionsof one monomer on its adjacent neighbour(s) could be
In this paper, we have derived a self-consistent modelfactored into two independent contributions and each

for branched polymeric liquidcrystals. This model showscould be considered separately. This is clearly not the
a ® rst order isotropic± nematic transition, in agreementcase since the two monomers cannot occupy the same
with experiments. The parameters e0 and s0 can bevolume of space. More subtly, the angular distribution
adjusted to match the predicted scalar order parameterused in equation (13) does not distinguish between
at the phase transition to an experimentally measuredchains with even or odd numbers of atoms even though
order parameter. Order of magnitude estimates of thethe chemical properties of the two are known to be, in
® rst order, polymeric self-interaction, corrections to thegeneral, quite di� erent.
mean-® eld theory show that our model is likely validComparison of these theoretical results with the experi-
down to temperatures much smaller than the transitionmental data [1± 3] nevertheless shows a reasonable
temperatures, at least for the polymers considered inqualitative agreement. To predict the actual transition
this paper. Finally, we foundan empirical scaling relation
between the observed transition temperature and the
average molecular weight.
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